Changing and Unchanging 2-Rainbow Independent Domination

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

unicyclic graphs with strong equality between the 2-rainbow domination and independent 2-rainbow domination numbers

a 2-emph{rainbow dominating function} (2rdf) on a graph $g=(v, e)$ is afunction $f$ from the vertex set $v$ to the set of all subsets of the set${1,2}$ such that for any vertex $vin v$ with $f(v)=emptyset$ thecondition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled. a 2rdf $f$ isindependent (i2rdf) if no two vertices assigned nonempty sets are adjacent.the emph{weight} of a 2rdf $f$ is the value $o...

متن کامل

Changing and Unchanging Domination Number of a Commutative Ring

Let R be a commutative ring and let Γ(Zn) be the zero divisor graph of a commutative ring R, whose vertices are non-zero zero divisors of Zn, and such that the two vertices u, v are adjacent if n divides uv. In this paper, we evaluate the changing and unchanging domination number of Γ(Zn) and we evaluate the same result in Γ(Z2p), Γ(Z3p), Γ(Zp2), Γ(Z2n) and Γ(Z3n) . Our main result is, Brigham ...

متن کامل

Changing and Unchanging of Complementary Tree Domination Number in Graphs

A set D of a graph G = (V,E) is a dominating set if every vertex in V −D is adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced subgraph < V −D > is a tree. The minimum cardinality of a complementary tree dominating set is called the complementary tree domina...

متن کامل

Changing and unchanging of the domination number of a graph

LetG be a graph and (G) denote the domination number ofG. A dominating setD of a graphGwith |D|= (G) is called a -set ofG. A vertex x of a graphG is called: (i) -fixed if x belongs to every -set, (ii) -free if x belongs to some -set but not to all -sets, (iii) -bad if x belongs to no -set, (iv) −-free if x is -free and (G− x)= (G)− 1, (v) 0-free if x is -free and (G− x)= (G), and (vi) q -fixed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2019

ISSN: 2169-3536

DOI: 10.1109/access.2019.2919976